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Multiple sequence alignment has proven to be a powerful method for creating protein and
DNA sequence alignment profiles. These profiles of protein families are useful tools for
identifying conserved motifs, such as the catalytic triad of the serine protease family or the
seven transmembrane helices of the G-protein coupled receptor family. Ultimately, the
understanding of the critical motifs within a family is useful for identifying new members of
the family. Due to the complexity of protein-ligand recognition, no universally accepted method
exists for clustering small molecules into families with the same or similar biological activity.
A combination of the concept of multiple sequence alignment and the 1-dimensional molecular
representation described earlier offers a new method for profiling sets of small molecules with
the same biological activity. These small molecule profiles can isolate key commonalties within
the set of bioactive compounds much like a multiple sequence alignment can isolate critical
motifs within a protein family. The small molecule profiles then make useful tools for searching
small molecule databases for new compounds with the same biological activity. The technique
is demonstrated here using the human ether-a-go-go potassium channel and the kinase SRC.

Introduction
In bioinformatics, DNA and protein sequence align-

ment is the foundation for predicting structural similar-
ity and thus the likelihood of similarity in function. In
cheminformatics, a host of chemical similarity measures
are used to assess the similarity between pairs of small
molecules and thus the likelihood of them having
similar function, i.e., biological activity. The list of small
molecule similarity identification techniques includes
substructure fingerprints,1,2 pharmacophore finger-
prints,3-7 and overall 3-D alignments.8,9 For the purpose
of finding molecules with similar function, DNA and
protein sequence alignment have several advantages
over methods for determining chemical similarity. A
protein sequence typically has 100-1000 amino acids.
A small molecule on the other hand typically has 20-
40 non-hydrogen atoms. Thus, the problem of determin-
ing chemical similarity does not have the same statis-
tical power of large numbers. In addition, the biological
activity of a small molecule often hinges on a single
atom. Indeed, there are numerous cases in which the
change, deletion, or addition of a single atom completely
abolishes the biological activity of a small molecule. To
further complicate matters, a single small molecule will
often have multiple seemingly unrelated biological
activities. In this sense the small molecule similarity
problem is context specific. Figure 1a shows a molecule
that both inhibits the p38 kinase and acts as an
antagonist of the glucagon receptor, a class B GPCR.
Figure 1b shows a related molecule that is an inhibitor
of the p38 kinase but not an antagonist of the glucagon
receptor. Figure 1c shows a second related molecule that
retains the glucagon antagonist activity but is devoid
of the p38 activity. From the viewpoint of p38 molecule

1a is similar to 1b but not 1c whereas from the
perspective of the glucagon receptor 1a is similar to 1c
but not 1b.

Despite the aforementioned differences, the problems
of assigning function to a protein and assigning function
to a small molecule share a common challenge. Often
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Figure 1. An example of a small molecule showing multiple
biological activities and subtle changes that distinguish be-
tween these activities.50 This example shows that assigning
function to a small molecule, i.e., its biological activity, based
on similarity is a context specific problem. (A) Compound A
both inhibits the p38 kinase and acts as an antagonist of the
glucagon receptor which is a GPCR from the class B family.
Compound B is an example of a small molecule that is closely
related to compound A and retains the p38 inhibitory activity
but is devoid of the glucagon activity. Compound C is an
example of a small molecule that is closely related to A and
retains the glucagon activity but is devoid of the p38 activity.
Thus, from the perspective of p38, molecule A is similar to B
but not C whereas from the perspective of the glucagon
receptor, A is similar to C but not B.
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two proteins with little or no overall sequence identity
share a common function. An example is the serine
protease family in which only the catalytic triad (Ser,
Asp, and His) is required for function while the remain-
der of the amino acids largely serve to precisely position
the catalytic triad.10-13 Over a few hundred amino acids,
three residues have no effect on overall sequence
identity. Similarly, two small molecules with little or
no obvious similarity often possess the same biological
activity. Much like the example of the serine protease
family, the binding of a small molecule to a specific
protein often relies on a few key interaction points, such
as hydrogen bond acceptors, donors, aromatic rings, etc.,
with the remainder of the molecule serving to precisely
position the key interaction points. The set of interaction
points and their precise arrangement is referred to as
the pharmacophore.14

Bioinformatics addresses the issue of identifying
relationships between proteins in large part through
multiple sequence alignment. The advantage of multiple
sequence alignment over pairwise alignment is that
multiple sequence alignment can find residues that are
conserved over an entire protein family thereby distin-
guishing the critical amino acids or motifs such as the
catalytic triad of the serine protease family. The most
comparable technique in computational chemistry is
pharmacophore modeling. In this case, multiple small
molecules are aligned in 3 dimensions. The features that
the majority of the small molecules share are analogous
to the conserved amino acids of a multiple sequence
alignment. Pharmacophore models are often used to
search through a small molecule database for molecules
with the same biological activity much like a multiple
sequence alignment can be used to search for related
family members.

A key difference between multiple sequence align-
ment and pharmacophore modeling is that multiple
sequence alignment is inherently a 1-dimensional search
problem and is therefore amenable to a host of special-
ized algorithms whereas pharmacophore modeling is
inherently a high dimensional problem involving for
each molecule 3 rotational, 3 translational, and the
sometimes many conformational degrees of freedom. In
computational chemistry, 3-dimensional methods in
general and pharmacophore modeling in particular
suffer from the problem of conformational explosion as
the number of rotatable bonds increases. This confor-
mational explosion makes the initial elucidation of the
pharmacophore extremely challenging and affects both
the quality and speed of the search of conformational
databases.

Recently, Dixon and Merz15 developed a method for
assessing molecular similarity that is directly analogous
to pairwise sequence alignment. In this method the
atoms of the small molecule, either from 3-dimensional
coordinates or 2-dimensional topological distances, are
projected onto 1 dimension using multidimensional
scaling.16 This results in the molecule being represented
as a 1-dimensional string of atoms where the atom
pairwise distances retain as much information as pos-
sible concerning their true 2- or 3-dimensional distances.
Once two molecules have been projected to 1 dimension
they can be rapidly aligned using the techniques of
pairwise alignment. The chief differences between pair-

wise protein sequence alignment and pairwise 1-dimen-
sional molecular alignment are; first, for 1-dimensional
molecular alignment, both relative orientations must be
considered, second, insertions and deletions do not make
sense in the context of a small molecule, and third for
small molecule alignment, the 1-dimensional represen-
tations can be aligned continuously relative to one
another rather than in discrete steps. In a variety of
tests Dixon and Merz have shown this molecular
similarity method to be superior to a variety of other
similarity methods.

In this work, we extend the method of Dixon and Merz
to multiple ligand alignment. The goal is to create
1-dimensional profiles from many molecules with the
same biological activity that identify the features com-
mon to all or most of the molecules. Such a profile could
potentially isolate the key features of the molecules,
much like a pharmacophore model isolates key interac-
tion sites and a multiple sequence alignment isolates
conserved amino acids. Furthermore these profiles
would avoid the difficulties associated with the high
dimensionality encountered in the conformational search
problem.

To align 1-dimensional representation of K molecules,
there are a total of 2k-1 possible relative orientations.
As an example, Figure 2a shows the 4 relative orienta-
tions of 3 1-dimensional objects. With 10 molecules there
are 512 possible relative orientations, and with 20
molecules there are over 50 000 possible relative orien-
tations. To find the global maximal alignment, one must
solve a continuous global optimization problem in K -
1 dimensions for each of the possible 2K-1 relative
orientations. As an example the 2-dimensional similar-
ity landscape for 3 molecules, Cisapride,17 Thio-

Figure 2. The search space in a multiple 1-dimensional
alignment of three molecules. (a) The 4 possible relative
orientations of the 3 1-dimensional objects. Note that the four
remaining orientations in which the top arrow points to the
left are by flipping all three arrows mathematically equivalent
to one of the four relative orientations shown in part a. (b)
The 2D search space for a single relative orientation of the
three molecules Cisapride, Thioridazine, and Ziprasidone.
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ridazine,18 and Ziprasidone18 are shown in Figure 2b.
The number of local maxima is certain to increase
exponentially with the number of molecules. Because
of the complexity of the high dimensional similarity
landscape and the large number of discrete relative
orientations, a brute force solution to the overall global
optimization problem is not practical. In addition, the
large number of local maxima and the presence of
discrete variables preclude the exclusive use of gradient-
based methods.

To produce a consensus 1-dimensional alignment of
multiple molecules, a heuristic approach is used: evo-
lutionary programming19 to address the continuous
variables and genetic algorithms20 to handle the discrete
variables. The combination of genetic algorithms and
evolutionary programming has been shown through
numerous examples to robustly handle optimization
problems with continuous and discrete variables21,22 and
thus is particularly well suited to the problem of
multiple 1-dimensional ligand alignment. Due to the
complexity of the optimization problem involved, we
adopt the heuristic combination of evolutionary pro-
gramming and genetic algorithms for building a near
optimal multiple ligand alignment profile. We then show
these profiles to be useful for rapidly searching large
compound databases for novel molecules with the same
biological activity. Finally, we compare the results with
the 1-dimensional profiles to results using comparable
3-dimensional methods. We demonstrate the utility of
this approach with the human ether-a-go-go potassium
channel and the kinase SRC.

Methods

To obtain multiple 1-dimensional ligand alignments, a
heuristic approach utilizing evolutionary programming and
genetic algorithms was used to ‘evolve’ a solution, resulting
in a consensus multiple alignment profile of the selected set
of compounds. Each small molecule to be aligned is first
converted, using only 2-dimensional topological distances, to
its 1-dimensional representation through the multidimensional
scaling and BFGS optimization procedure as described for the
pairwise case.15 Each small molecule’s 1-dimensional encoding
consists of information about the type of each atom and its
1-dimensional coordinate.

For the purposes of this description, it is assumed that each
of the 1-dimensional representations has been created such
that its center of mass is 0, i.e., the sum over the 1-dimensional
coordinates of its atoms is 0. To put this molecule’s 1-dimen-
sional representation into a new frame of reference, its
orientation and translation must be specified. An orientation
takes a value of 1 or -1 where a value of 1 means to make no
change in orientation and a value of -1 means to flip the
1-dimensional representation of the molecule. The translation
is a continuous variable, takes any real value, and essentially
shifts the representation along the 1-dimensional axis. Math-
ematically, the 1-dimensional coordinates are transformed by
xi

new ) Fxi
initial + ∆x where F is the orientation and ∆x is the

translation.
Organism/Gene Encoding. The first step in a genetic

algorithm or evolutionary program is the generation of an
initial population of potential solutions referred to as organ-
isms. Each organism consists of a set of genes, with each gene
representing the translation and orientation of a single
molecule. The initial set of generated genes contains transla-
tion values distributed via a Gaussian distribution with mean
0 and standard deviation equal to one-quarter of the molecule’s
1-dimensional width. The initial orientation of each gene was
chosen purely at random.

Alignment Scoring/Organism Fitness. To assess the
fitness of an organism, the quality of any given multiple
alignment must be scored. The score is given by

where the outer sum is over all pairs of molecules in the
alignment, the second sum is over the atoms of the ith
molecule, the inner sum is over the atoms of the jth molecule,
S(aik,ajm) is the similarity of the kth atom of the ith molecule
to the mth atom of the jth molecule, xik and xjm are the
1-dimensional coordinates of the two atoms, and f is a distance
dependent measure of the overlap of two atoms. The full
description of the scoring scheme requires two components:
the atom pairwise similarity matrix, S, and the distance
dependent overlap function, f. These are described below.

The overlap function, f, in eq 1 could reasonably be any
number of functions. For this work the original overlap
function proposed by Dixon and Merz15 was used:

This overlap score is best thought of as each atom having a
width of 1 bond unit and the overlap being the area under the
intersection of the two atoms.

Atom Pairwise Scoring Matrixes. There are no well-
established atom similarity matrixes such as the Dayhoff,23

PAM,23 MDM,23 BLOSUM,24 GCB,25 and PET26 similarity
matrixes for amino acids. There are a large number of factors
that could be taken into account in determining atom similar-
ity. These factors include, actual atom type, atom hybridiza-
tion, partial charge, polarizability, aromaticity, hydrophobicity,
etc. As many of these factors depend on both the particular
atom and its neighbors in the molecule, there could be in
essence an infinite number of atom types. A reasonable atom
similarity matrix must have a sufficiently detailed atom
description without having an unmanageable number of atom
types.

Ultimately, the atom types used were the same as those
used by Dixon and Merz.15 In this scheme an atom’s type is
determined by its atomic number, its hybridization, number
of bonded hydrogens, and whether it is a member of a ring.
The most obvious atom pairwise similarity matrix is the
identity matrix, i.e., atoms have a similarity of 1 if they have
identical type; otherwise they have a similarity of 0. This
matrix proved to be too strict. The analogy for protein sequence
alignment would be to classify amino acids such as leucine
and isoleucine as completely different. Experience has shown
that similarity matrixes such as BLOSUM, PAM, and the
hydrophobicity matrixes are significantly more sensitive than
the identity matrix. With this in mind similarity matrix 1
(denoted by M below) was developed with the following rules:

Except for the halogens, atoms of different atomic number
have no similarity. The similarity between atoms of the same
atomic number decreases from 1 to a minimum of 0 via the
rules: decrease by 0.4 for each change in hybridization;
decrease by 0.2 if one of the atoms is in a ring while the other
is not; decrease by 0.2 for the difference in number of
hydrogens. The similarity for halogens is 1-0.2 × n where n
is the difference in the rows of the periodic table of the two
halogens.

Ultimately, similarity matrix 1 was not sufficiently dis-
criminating because the alignments were always dominated
by the carbon atoms of the molecules. Often, the carbon atoms
act more as the framework of the molecule and less as
prominent interactions. To overcome this issue, the MDDR27

database was profiled for the frequency of occurrence of each
possible atom type. From the vector of occurrences, P, the
weighted occurrence vector, W, is defined by W ) MP where
M is similarity matrix 1. The element Wj, of the weighted
occurrence vector, W, is the expected similarity between an

alignment score ) ∑
i<j

∑
k)1

Ni

∑
m)1

Nj

S(aik,ajm)f(xik - xjm) (1)

f(∆x) ) [0 if |∆x| g 1
1 - |∆x| if |∆x| < 1 ] (2)
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atom of type j and a randomly chosen atom from the MDDR
database. Similarity matrix 2 is then derived by scaling
similarity matrix 1 by the weighted occurrences via the
formula

Similarity matrix 2 was used for all atom pairwise similarity
calculations.

Selection Process. There are many ways in which a new
generation of potential solutions can be created from the
previous generation. For this work the selection process was
done through roulette wheel selection21,22 with (mu,lambda)
population replacement from one generation to the next. Given
a population of organisms, the probability Qi for organism i to
have offspring in the next generation is dependent on its
fitness score, E, and the temperature constant, T, via the
relationship, Qi∝e(Si/T), where the constant of proportionality
is chosen so that the sum of the Qi over the population is 1
and T is a constant used to control the global versus local
nature of the search.

Recombination and Mutation Processes. A genetic
algorithm was used to perform crossover with two parents to
yield a single offspring. Each gene of the offspring was
inherited at random with uniform crossover with 50% prob-
ability. At this point the genome of the offspring is a combina-
tion of the genomes of its parents.

After the entire offspring generation is created, two types
of random mutations were used to further modify each
organism: flip mutation and shift mutation. The flip mutation
takes the form of bit flipping which is typical of a genetic
algorithm but usually not seen in evolutionary programming.
The flip mutation negates the orientation of the 1-dimensional
atom coordinates resulting in a 1-dimensional representation
that is flipped. The shift mutation uses a Gaussian distribution
to change the translation of a 1-dimensional representation
essentially shifting the molecule along the 1-dimensional axis.
This is typical of evolutionary programming but usually not
seen in genetic algorithms. Both the shift and flip mutations
were applied to each molecule with a probability of 0.05%. A
Gaussian distribution with a standard deviation of 0.5 bond
units was used to randomly perturb those molecules selected
for a shift mutation. Also, for this work a population size of
128 was used with 500 steps of the evolutionary process.

The Compound Database Search. After the multiple
alignment of the small molecules with the same biological
activity of interest, we wish to search large databases of
available or virtual compounds with the intent of finding novel
small molecules with the same biological activity. To assess
the likelihood of a small molecule having the desired biological
activity, its 1-dimensional representation must be aligned to
the multiple ligand profile. To find the optimal alignment, two
1-dimensional optimizations (both relative orientations) must
be performed. With two straightforward techniques the data-
base search can be extremely fast: ∼900 molecules per second
on a single SGI R10000 processor.

The first technique is to create a lookup table for each atom
type at the beginning of the database search. To do so, a fixed
step size (usually 0.1 bond units) is chosen. Beginning at the
lower limit of the profile the score for an atom of type 1 is
calculated and stored in the first position of the array. Next
the atom is moved one step size to the right, the score for the
atom is calculated and stored in the second position of the
array. The process is continued until the atom reaches the
upper limit of the profile. The process is then repeated for each
atom type. When the score for a molecule from the database
needs to be calculated, the score for each atom can be found
using its 1-dimensional coordinate from the appropriate array.
The memory needed to store the arrays is less than 1 Mb, and
the time necessary to calculate the lookup table is less than
10 s on an SGI R10000.

The second technique is a standard bracketing technique
used for solving 1-dimensional optimization problems.28 Again,

a fixed step size (usually 0.5 bond units) and upper and lower
limits (determined by the bounds of the profile and the bounds
of the molecule) are chosen. Beginning at the lower limit the
score for the molecule is calculated. The molecule is moved
one step to the right and the score calculated again. The
process is continued until the molecule moves past the upper
limit. Three consecutive offsets of the molecule (x1 < x2 < x3)
are said to bracket a maximum if S(x1) < S(x2) and S(x3) <
S(x2): because the scoring function S is continuous, one can
mathematically guarantee that under these conditions S will
have a local maximum somewhere between x1 and x3.28

Standard line optimization techniques can then be used to find
any bracketed local maximum to any desired level of accuracy.

Results
All molecules used in these studies were projected into

their 1-dimensional representation using only their
interatomic topological distances via the procedure
outlined by Dixon and Merz.15 Thus, there is no need
to produce intermediate 3-dimensional coordinates at
any stage in the process. To quantify the extent of loss
of information we calculated the average distortion with
the 1-dimensional representation of each molecule in
the MDDR database with respect to its 2-dimensional
structure. The average distortion of a molecule is
calculated via

where N is the number of atoms in the molecule, dij is
the topological distance between atoms i and j, and dij

1D

is the distance between atoms i and j in the 1-dimen-
sional representation. In essence the formula captures
the average distortion between all pairs of atoms in the
molecule. Figure 3 shows the distribution of the distor-
tion of the molecules in MDDR in their 1-dimensional
representation. 90% of the molecules exhibit a distortion
below 9%, 95% exhibit a distortion below 11%, 99%
exhibit a distortion below 14%, and essentially all the
molecules of the MDDR database exhibit a distortion
below 20%. Thus, the 1-dimensional representation

Figure 3. The distribution of the extent of distortion of each
molecule caused by projecting from two-dimensional topologi-
cal distances to its 1-dimensional representation. 90% of the
molecules exhibit a distortion below 9%, 95% exhibit a distor-
tion below 11%, 99% exhibit a distortion below 14%, and
essentially all the molecules of the MDDR database exhibit a
distortion below 20%. Thus, the 1-dimensional representation
retains the majority of the information present in the 2-dime-
sional structure.

distortion )
2

N(N - 1)
∑
i)1

N

∑
j)1

i-1|dij - dij
1D|

dij

Sij )
Mij

xWiWj

(3)
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retains the majority of the information present in the
2-dimesional structure.

To demonstrate the utility of the multiple ligand
profiles for identifying novel small molecules with
similar biological activity, we perform seeding experi-
ments: a relatively large set of small molecules with
the same biological activity are collected and split into
a training and test set. For the purpose of this work,
the training sets consist of 10 molecules and the test
sets consist of at least 50 small molecules. The small
molecules of the training set are used to build the
1-dimensional profiles. The profiles are then used to
rank the molecules of the test set along with those from
a database of random compounds. The quality of the
search method is judged by the extent to which it
differentiates the molecules of the test set from those
of the random database.

The random molecules (∼100 000) were drawn from
the MDDR database27 with a molecular weight cutoff
of 600 Da. The MDDR database consists of drug-like

molecules and is representative of the types of small
molecules synthesized in medicinal chemistry programs.
Thus, selecting random small molecules from the MDDR
database makes these realistic examples.

The examples described below are: the human ether-
a-go-go potassium channel (hERG) and the kinase SRC.
The kinase SRC has been implicated in a variety of
cancers.29 In addition, SRC is used as a selectivity assay
in many kinase programs. Thus, a SRC virtual screen
would be useful as a means to generate new leads and
as a virtual filter to identify potential selectivity issues
in kinase programs. As a test case SRC is representative
of a medicinal chemistry program in that there are a
small handful of chemotypes all of which are repre-
sented in the training set. Thus, the test set contains
molecules whose chemotypes are all represented in the
training set.

The second example is the hERG potassium channel.
Inhibition of the hERG potassium channel has recently
been linked to cardiotoxicity such as prolonged QT

Figure 4. The SRC 1-dimensional multiple ligand alignment. (a) The compounds used in the alignment. (b) The resulting
alignment. Each compound is shown in part a roughly oriented in the same manner as in the alignment in part b. The color
indicates the type of atom, i.e., gray is carbon, red is oxygen, blue is nitrogen, etc. The darkness of the color indicates the
hybridization: light colors indicate Sp3 atoms and dark colors indicate Sp2 or Sp1 atoms. The size of the atom is proportional to
the amount the atom contributes to the score of the overall alignment.
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interval and torsades de pointes.30 Drugs such as
cisapride17 and terfenadine31 have been withdrawn from
the market because of their propensity to cause fatal
arrhythmias caused by blocking the hERG channel.
Thus, the hERG channel is a counter screen in many
medicinal chemistry programs. The hERG test set
consists largely of chemotypes not represented in the
training set. Thus, as an example the hERG data set is
more representative of the challenges faced in discover-
ing new chemotypes either during discovery efforts or
lead hopping.

The SRC Validation Study. The final SRC profile
and the 10 compounds used to build the profile are
shown in Figure 4a. In this case the test set consists of
142 known SRC inhibitors.32-42 The strongest feature
in the SRC profile is a central aromatic nitrogen (see
Figure 4b). One could hypothesize that these aligned
nitrogens make the hydrogen bond with the backbone
NH of the hinge region43 often observed as critical in
kinase-ligand interactions. In 9 of the 10 molecules
used to make the SRC profile the structure-activity
relationships strongly support the aromatic ring aligned
to the left of the profile as being the ring that binds in
the main hydrophobic pocket. The group that likely
binds in the main hydrophobic pocket for molecule
SRC-8 (see Figure 4) is the aromatic ring on the same
side as the NH2. Thus, this molecule should likely be
oriented the same as SRC-9 and SRC-10. The psuedo-
2-fold symmetry makes the problem of orienting these
three molecules particularly difficult.

The overall results of the database search with the
SRC 1-dimensional profile are shown in Figure 5.
Approximately 26% of the known SRC inhibitors are
ranked within the top 1% of the MDDR compounds
(enrichment ) 26), 58% of the known SRC inhibitors
are ranked within the top 5% of the MDDR compounds
(enrichment of 11.6), and nearly 95% of the known SRC
inhibitors are found within the top 17% of the MDDR
compounds (enrichment of 5.6).

The hERG Validation Study. The final 1-dimen-
sional profile and the 10 molecules used to build the
hERG profile are shown in Figure 6. In this case, the
hERG test set consists of 92 known hERG inhibitors.

The central feature of the hERG profile is a basic amine;
only Loratadine lacks this feature. The basic center is
immediately surrounded by aliphatic carbons. Both ends
of the profile are dominated by aromatic rings.

The performance of the hERG profile, shown in Figure
7, is not nearly as crisp as those with the SRC data set.
In this case 6% of the known hERG inhibitors are
ranked in the top 1% of the MDDR compounds, 25% of
the known hERG inhibitors are ranked in the top 3%
of the MDDR compounds, and 30% of the known hERG
inhibitors are ranked in the top 5% of the MDDR
compounds. Thus, the enrichment factors with the
hERG data set range from 6 to 8 when considering the
top 1-5% of the overall compounds compared to enrich-
ment factors of 11-26 with the SRC data set over the
same range. The difference in performance likely stems
from the fact that the hERG potassium channel is much
less specific in its binding requirements when compared
to typical proteins such as SRC. This affects results such
as these in numerous ways. First, there are in all
likelihood far more hERG inhibitors than SRC inhibi-
tors within the MDDR database. Second, the hERG data
set is much more diverse than the SRC data set. Both
of these considerations would be expected to increase
the difficulty in tests such as these.

A Comparison to 3-Dimensional Methods. Here
we compare the results with the 1-dimensional profiles
to those with two 3-dimensional methods: explicit
pharmacophore models and 3-point pharmacophore
fingerprints. These methods are commonly used and
well validated and therefore create good benchmarks
for comparison.

In all cases, the conformations were generated for the
molecules using Catalyst44 with the fast option and a
15 kcal/mol strain cutoff. The pharmacophore finger-
prints were generated from within Cerius245 using a 10
Å grid with a uniform 2.0 Å spacing and using all
available features: negative charge, positive charge,
negative ionizable, positive ionizable, hydrogen bond
acceptor, hydrogen bond acceptor projection, hydrogen
bond donor, hydrogen bond donor projection, aromatic
ring, aromatic ring projection, and hydrophobic features.
From the pharmacophore fingerprints of two molecules
the Tanimoto coefficient was used as the similarity
measurement. Finally, to rank the compounds of the
MDDR database and the test sets, both the mean and
maximum similarity to the compounds in the training
set were used.

To create a pharmacophore model for hERG, we
recreated the model described by Ekins and co-work-
ers.46 This model consists of a positive ionizable feature
and four hydrophobic features. To create a pharma-
cophore model for SRC, the crystal structures 1qcf
(HCK),47 1m17 (EGFr),48 and 1m52(ABL)49 are used,
each of which is cocrystalized with a ligand similar to
at least one of the compounds in the training set (see
Figure 8). Two pharmacophore models, a four feature
and a six feature model, were then created by manually
mapping the observed conserved interactions. The four
feature model consists of a hydrogen bond acceptor
representing the aromatic nitrogen that interacts with
the backbone NH of the hinge region (Met341 of SRC),
an aromatic ring feature representing the heteroaro-
matic core, an aromatic ring representing the group in

Figure 5. The performance of the SRC profile. To make these
figures, the molecules are ranked and sorted by their score,
in this case their similarity to the 1-dimensional profile. The
top curve is the fraction of the known SRC actives found
(y-axis) versus the fraction of the overall compounds (x-axis).
The diagonal line is the expected performance of a method that
selected compounds at random.
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the main hydrophobic pocket, and a hydrophobic feature
representing the groups in the secondary hydrophobic
patch. The six feature model consists of these same four
features with two additional hydrogen bond donors that
represent the interactions with the backbone carbonyl
oxygens of the SRC hinge region (Glu339 and Met341).
The donors are observed in some cocrystallized kinase
inhibitors of the same chemotype used in the SRC
training set but not in others. With both hERG and SRC
pharmacophore models the “Fit Value” produced by the
Catalyst utility citest was used to rank the compounds
in the MDDR database and in the test sets.

The results from the comparisons of the 1-dimensional
profiles to the 3-dimensional methods are shown in
Figure 9 (SRC) and Figure 10 (hERG). For both data
sets the pharmacophore fingerprints and the explicit
pharmacophore models produced reasonable enrich-
ments. In both cases, however, the 1-dimensional pro-

files outperform the 3-dimensional methods. With the
SRC data set, the 1-dimensional profile significantly
outperforms either the pharmacophore model or the
pharmacophore fingerprints. In particular, the 3-dimen-
sional methods show significant enrichment initially but
quickly resume random behavior. Compounds for which
the bioactive conformation was generated were probably
ranked very high whereas those for which the confor-
mational search failed to produce a conformation rea-
sonably close to the bioactive conformation were ranked
within the noise produced by the MDDR compounds.
Since it avoids any explicit conformation 1-dimensional
multiple alignment does not face this problem.

Perhaps the largest difference between the methods
is in the amount of time required to search a large
database. For the discussion below all quoted times are
from an SGI R10000. Searches with the 1-dimensional
profiles can rank approximately 900 molecules per

Figure 6. The hERG 1-dimensional Multiple Ligand Alignment. (a) The compounds used in the alignment. (b) The hERG
1-dimensional alignment. Each compound is shown in 6a roughly oriented in the same manner as in the alignment in part b. The
atoms are colored and sized as described in Figure 4b.
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second meaning the search of the approximately 100 000
MDDR compounds takes less than 2 min. The confor-
mation generation for the MDDR database took ap-
proximately 15 days of CPU time. Once the conforma-
tions had been generated the fingerprint generation took
approximately 7 h. Once the conformations and corre-
sponding pharmacophoric fingerprints were produced
the pharmacophore similarities to the MDDR com-
pounds were calculated in approximately 2 h. The
generation of the pharmacophore fit value for the entire
MDDR database took several weeks of CPU time, and
as such this is not a practical means to search through
large corporate databases. While speed is a secondary
consideration it does dictate where the methods can be
reasonably applied. Particularly, the speed and quality
of searches with the 1-dimensional profiles makes them
amenable to searching large databases of available or
virtual compounds where 3-dimensional methods are
not fast enough.

Comparison with Pairwise 1-Dimensional Simi-
larity. To demonstrate the value of the multiple align-
ment, we compare the performance of the multiple
alignment with the 1-dimensional pairwise similarity.
To do this, we compute the 1-dimesional similarity15

between each of the molecules of the training set to each
of the molecules of the test set and MDDR database.
As with the 3-dimensional methods to rank the mol-
ecules of the test set and MDDR database, their
maximum similarity and average similarity to the
members of the training set were used.

For the SRC case in which the chemotypes of the test
set are well represented by the training set the maxi-
mum similarity outperforms both the average similarity
and the 1-dimensional profile (see Figure 11a). This
result is not all that surprising as molecules of the same
chemotype would be expected to show very high simi-
larity to other molecules of the same chemotype. Thus,
the maximum similarity metric should be well suited
to finding highly related additional inhibitors. The
average similarity and the 1-dimensional profile per-
form very similarly.

Figure 7. The performance of the hERG profile. This figure
was created using the hERG 1-dimensional profile to rank the
compounds of the MDDR and the hERG training set in the
same manner as Figure 5.

Figure 8. The compounds and the features used to build the
SRC pharmacophore model. The three compounds were se-
lected from crystal structures of related kinases because they
are representative of the chemotypes found in the training set.
A was taken from the crystal structure of 1m1748 (EGFr). B
was take from the pdb structure 1m5249 (ABL). C was taken
from pdb structure 1qcf47 (HCK). The orange aromatic ring of
the three ligands bound in the main hybrophobic pocket of the
appropriate kinases. This interaction was represented by an
aromatic ring feature. The blue nitrogen of the three ligands
was observed to interact with the hinge NH (corresponds to
Met341 of SRC) in each case. This interaction was represented
by a hydrogen bond acceptor. The substructures highlighted
in purple were bound in the secondary hydrophobic site and
were represented as a hydrophobic feature. The central
heteroaromatic core was represented by an aromatic ring
feature. Finally, the NH of B was observed to interact with a
backbone carbonyl oxygen of the kinase (corresponds to
Met341 of SRC) while the NH2 of C was observed to interact
with a second carbonyl oxygen of the kinase (corresponds to
Glu339 of SRC). Each of these was represented by a hydrogen
bond donor feature in the 6 feature model.

Figure 9. A comparison between the SRC 1-dimensional
profile and 3-dimensional methods. (a) The performance of the
1-dimensional profile is in black. The performance of the 4
feature pharmacophore model is in red. The performance of
the 6 feature pharmacophore model is in blue. The pharma-
cophore models are described in Figure 8. (b) The performance
of the 3-dimensional profile is in black. The results with the
1-dimensional pharmacophore fingerprint are shown in blue
and red. The maximum similarity between the training set
compounds was used to create the red curve whereas the
average similarity to the training set compounds was used to
create the blue compounds.
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The hERG test case better demonstrates the value of
the multiple alignment profiles over the pairwise align-
ment. In this case the majority of the chemotypes in the
test set are not represented in the training set. In this
case the multiple alignment profile outperforms both
the maximum and average similarity metrics. As ex-
pected the maximum similarity metric performs quite
poorly. After finding approximately 20% of the known
inhibitors, the maximum similarity metric trails off to
random performance. This is expected, as most of the
test set was not represented in the training set. Inter-
estingly, the average similarity performs significantly
better than random even though the maximum similar-
ity does not. The 1-dimensional profile significantly
outperforms both the average and maximum similarity.
For example the average similarity metric finds 28% of
the known inhibitors within the top 10% of the overall
compounds compared to 45% for the 1-dimensional
profile.

It is also noteworthy that for the pairwise similarity
methods the time required to search a large database
will increase linearly with the number of molecules in
the training set. The methods used to perform the
database searches with a 1-dimensional profile are

independent of the number of molecules in the training
set. Thus, for these cases where we had 10 molecules
in the training set the database searches with the
1-dimensional profile were over 10 times faster than the
pairwise searches.

Discussion
Because it involves discrete and continuous variables

with a complex landscape, multiple ligand alignment
offers a challenging numerical optimization problem.
Despite its heuristic nature the combination of a genetic
algorithm and evolutionary programming proved to be
a robust way to generate near optimal multiple ligand
alignments. It is likely that for similar problems with
mixed continuous and discrete variables this combina-
tion will prove fruitful.

Despite the unconventional nature of the approach,
the 1-dimensional representation of small molecules
retains much of the information present in a small
molecule structure. Much like a 3-dimensional phar-
macophore model, a 1-dimensional profile can effectively
isolate the common features of a set of molecules with
the same biological activity. This in turn makes the
profiles useful for searching databases of available small
molecules for compounds with the same biological
activity. In addition, the improvements in running times
are accompanied by improvements in enrichment. In

Figure 10. A comparison between the hERG 1-dimensional
profile and 3-dimensional methods. (a) The performance of the
1-dimensional profile is in black. The performance of the hERG
pharmacophore model is in blue. The hERG pharmacophore
model used is a reproduction of the model by Ekins and co-
workers.46 (b) The performance of the 1-dimensional profile is
in black. The results with the 1-dimensional pharmacophore
fingerprint are shown in blue and red. The maximum similar-
ity between the training set compounds was used to create
the red curve whereas the average similarity to the training
set compounds was used to create the blue compounds.

Figure 11. A comparison of the 1-dimensional profiles to
pairwise 1-dimensional similarity. In both cases the results
with the 1-dimensional profile are shown in black, the results
with the maximum similarity metric are shown in red, and
the results with the average similarity metric are shown in
blue. (a) The SRC example. (b) The hERG case.
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both cases examined here, the 1D methods outper-
formed the 3D methods. This is significant considering
that virtual screening methods such as these are best
positioned prior to synthesis and applied to large virtual
chemical libraries. The observed improvements in ac-
curacy and the considerable decrease in time required
for virtual screening make searching large virtual
collections tractable and allows the profiles to be used
multiple times while speeding up the turn-around time
in the cyclic design of combinatorial libraries.

Future work in this area will include more rigorous
atom similarity calculations. While the atom similarity
matrices used for this work showed improvement over
the identity matrices there is little reason to believe they
are optimal. Improvements could include focusing more
on properties of the atoms such as hydrogen bonding
capacity, aromaticity, etc., rather than explicit atom
types. Furthermore, the alignment procedures could be
tailored to include both molecules with the biological
activity of interest and molecules known to be devoid
of the biological activity of interest. Incorporating the
negative information would further focus the profiles
to the key features of the molecules and might help to
eliminate many of the false positives found in the virtual
screening experiments.
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